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Abstract. The propagation of a monochromatic longitudinal acoustic wave along the low conductivity axis
of a thin quasi-two-dimensional conductive film, in the absence of an external magnetic field, is studied
theoretically. It is shown that under certain conditions the formation of both a standing ordinary wave
(OAW) and an anomalous acoustic wave (AAW) is possible. The frequency dependence of the amplitudes
of both waves is derived. For certain values of the characteristic parameters, the AAW in the film may be
dominant. From the resonance conditions for the formation of standing OAW and AAW waves (especially
the AAW), it is possible to obtain information about the electronic structure of the quasi-two-dimensional
conductors, e.g. the corrugation parameter η or the relaxation properties of the charge carriers.

PACS. 72.10.-d Theory of electronic transport; scattering mechanisms – 72.30.+q High-frequency effects;
plasma effects – 72.50.+b Acoustoelectric effects

1 Introduction

The search for new superconducting materials is closely re-
lated to the interest in low-dimensional conductors. Most
of these conductors are layered structures of organic origin
with a sharply pronounced anisotropy in the conductivity:
their electrical conductivity in the layers is significantly
higher than normal to the layers. Layered conductors of
organic origin are attractive for experimenters owing to
their peculiar behaviour in strong magnetic fields and to
a number of phase transitions at comparatively low pres-
sures.

The discovery of Shubnikov-de Haas oscillations of the
magnetoresistance in tetracyano-tetracen halogens and in
a large family of tetrathiafulvalene based ion-radical salts
with charge transfer in magnetic fields of several tens of
teslas suggests that these compounds have metallic type
conductivity even across the layers and that their carrier
mean-free path � reaches several micrometers [1–3]. This
suggests that it might be reasonable to apply to the elec-
tronic description of these systems the well-developed con-
cept of charge carrying quasi-particles in metals.

The low-dimensional electron energy spectrum of such
conductors is quasi-two-dimensional (quasi-2D) in charac-
ter

ε(�p) =
∞∑

n=0

εn(px, py) cos
(anpz

�

)
, (1)
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i.e. it depends weakly on the momentum component
pz = �p�n along the normal �n to the layers, while
the functions εn(px, py) decrease sharply with increasing
n: εn+1 = ηεn � εn. Here � is Planck constant, a is the
lattice period in the z-direction and η is the quasi-2D pa-
rameter of the spectrum. The corresponding Fermi surface
is a weakly corrugated open cylinder.

Over the past decade, high-frequency phenom-
ena in layered conductors under magnetic fields were
extensively studied, both experimentally [4–7] and
theoretically [8–18]. The theoretical studies of high-
frequency acoustic phenomena in these conductors show a
number of characteristic features which appear distinct
from the corresponding properties of three-dimensional
conductors. In this respect, it might be of interest to per-
form a theoretical analysis of the high-frequency acous-
tic phenomena since they are highly informative and can
be used successfully for a detailed study of the electronic
structure of layered conductors, in particular for obtain-
ing the dispersion relation and the relaxation properties
of the charge carriers.

To the best of our knowledge, only two theoret-
ical papers were published concerning high-frequency
acoustic phenomena in quasi-2D conductors in the ab-
sence of an external magnetic field [19,20]. In refer-
ence [19] it was shown that, apart from the acoustic wave
which propagates at the sound velocity (ordinary acous-
tic wave – OAW), there exists also a non-exponentially
attenuated anomalous acoustic wave (AAW) propagating
with a velocity ∼ ηv0. The ordinary acoustic wave is at-
tenuated at distance �at = ω∗/η v0. The electrons which
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participate in the attenuation have velocities that are al-
most normal to the wave vector �q ·�v ≈ 0, i.e. these are the
electrons which are in phase with the sound wave. The
excitation of the AAW is due to the “dragging” of the
acoustic field directly by the conduction electrons. Specif-
ically, when a longitudinal acoustic wave propagates in a
conductor, the lattice deformations displace the electronic
subsystem from equilibrium and thereby generate a longi-
tudinal electric field. The momentum which the electrons
acquire from this longitudinal field is transmitted to the
lattice at distances of the order of their mean free path
�. It means that there exists a mechanism “dragging” the
acoustic field at distances of the order of �. The electrons
which take part in this “dragging” of the acoustic field
in 3D-metals have velocities along the sound wave vector
(v = vF ) and they do not contribute to the sound attenua-
tion at all. In quasi-2D conductors, in which the Fermi sur-
face is a weakly corrugated cylinder open in the direction
of propagation of the acoustic wave, these are the electrons
whose velocity component in the direction of propagation
of the sound reaches the highest value, vmax

z = η v0. The
acoustic wave which “survives” at distances � is known as
the AAW.

In a bulk conductor, at small distances from the
boundary surface, the amplitude of the AAW is insignifi-
cant compared to the OAW. The situation is quite differ-
ent if one considers the propagation of a high-frequency
acoustic wave in a thin quasi-2D conductive film whose
thickness d is much smaller than the mean-free path of
the electrons �, i.e. d � η�. In this case, at certain fre-
quencies of the external acoustic field, a resonance of the
AAW can be observed, i.e. standing AAWs can form.

2 Formulation of the problem

Consider a monochromatic longitudinal acoustic wave
propagating along the low conductivity axis (z-axis) of
a quasi-2D conductive film (0 ≤ z ≤ d). The displacement
U(0, t) = U0 exp(−iωt) of the surface (z = 0) is given. In
the following the behaviours of an ordinary acoustic wave,
UOAW(z), and of an anomalous acoustic wave, UAAW(z),
are theoretically analysed.

The complete system of equations describing the prop-
agation of acoustic waves in conducting media consists of
the Boltzmann kinetic equation for the charge carrier dis-
tribution function, f(�r, �p, t) = f0(ε)−χ(�r, �p) ∂f0/∂ε (here
χ(�r, �p) is the non-equilibrium additive term to the equi-
librium distribution function), the Maxwell equations, and
the equations of elasticity [21].

The relaxation processes in quasi-2D conductors gen-
erally become more involved than in three-dimensional
conductors, especially when the scattering on phonons is
taken into account. However, if we assume that the tem-
perature is fairly low, so that the charge carriers scatter
mainly on impurities, we can confine the discussion to the
relaxation-time approximation and analyse the distinctive
features introduced into the phenomenon, i.e. the quasi-
2D nature of the electron energy spectrum.

The Boltzmann kinetic equation for charge carri-
ers, written in the relaxation-time approximation, takes
the form

∂χ

∂z
− i

ω∗

vz
χ = e Ez − iω

vz
Λzz

∂U

∂z
(2)

where ω∗ = ω + iν, �v = {vx, vy, vz} is the velocity of the
charge carriers and Λzz is the deformation potential tensor
component. For brevity, we restrict the discussion to the
first two terms in equation (1) and set:

ε(�p) =
p2

x + p2
y

2m
− η

�

a
v0 cos

(apz

�

)
, v02 =

2εF

m
. (3)

In such a spectrum, the reduced deformation potential Λzz

depends only on pz:

Λzz = ηL cos
(apz

�

)
, L ≈ εF. (4)

The effective interaction of electrons in a quasi-2D conduc-
tor with an acoustic wave propagating along its low con-
ductivity axis is weakened to the extent that η is small. In
the purely two-dimensional case, η → 0 and Λzz vanishes.

The longitudinal electric field Ez(z) in conductors with
a high charge-carrier density can be derived from the elec-
trical neutrality conditions 〈χ〉 = 0, which is equivalent to
the continuity condition for the current, i.e.

jz(z) = e〈vzχ〉 = 0. (5)

The angular brackets indicate standard integration over
the Fermi surface

〈 · · · 〉 = − 2
(2π�)3

∫
(· · · )∂f0

∂ε
d3p. (6)

The acoustic field U(z) in the film can be described by
(2), (5) and the equation of elasticity:

∂2U

∂z2
+

(ω

s

)2

U =
1

�s2

〈
Λzz

∂χ

∂z

〉
, (7)

where � is the density of the metal and s is the acoustic
wave velocity.

The behaviour of the acoustic field in the film generally
depends on the type of scattering of the charge carriers
on the boundaries. Since the ratio vmax

z /vF = η is small,
only “glancing” electrons are present, and the specular
boundary condition can be taken as an approximation for
the electron distribution function [22]:

χ−(z = 0) = χ+(z = 0), χ−(z = d) = χ+(z = d),
(8)

where χ− and χ+ are the non-equilibrium terms produced
by conduction electrons incident on and reflected from the
surface, respectively.
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UOAW(z) = U(0)
f2 + 2γ [1 + i c − √

(1 + i c)2 − α2f2]

f2 + γ f2α2 [(1 + i c)2 − α2f2]−1/2

cos[a f (1 − 2 z
d
)/2]

cos[a f/2]
, (20)

3 Calculations

After Fourier transforming equations (2), (5), and (7) with
respect to z, one obtains the following algebraic solution
for the acoustic field:

Un =
nπ

d

[(−1)n U(d) − U(0)][1 + Gn]

− (ωs)2 + (nπd)2 [1 + Gn]
, (9)

where U(0) and U(d) are displacements at z = 0 and
z = d, respectively. The function Gk is

Gk =
1

�s2

ω∗

ω

[〈ω2Λ2
zz

v2
z

1(ω∗/vz)2 − k2
〉

− k
ω

ω∗

〈
Λzz(ω∗/vz)2 − k2

〉2 〈 1
(ω∗/vz)2 − k2

〉−1]
, (10)

and k = nπ/d. Integrating over the Fermi surface by (6),
one obtains

Gk =
mL2

2π2�2�a

ωω∗

k2s2v2
0

{
1 −

√

1 −
(

kηv0

ω∗

)2
}

. (11)

Using the inverse Fourier transformation, the acoustic
field in the film can be written

U(z) = AU(0) + BU(d), (12)

where A and B are the following sums:

A =
1
d

∞∑

n=−∞

nπ
d (1 + Gn) sin nπz

d

−(
ω
s

)2 + (nπ
d )2(1 + Gn)

,

B = −1
d

∞∑

n=−∞

(−1)n nπ
d (1 + Gn) sin nπz

d

−(
ω
s

)2 + (nπ
d )2 (1 + Gn)

. (13)

Applying to Poisson formulae [23] the sums A and B
can be represented in the following forms:

A =
1
π

{
2

∞∑

r=1

J1(r) − iJ2(r)

}
;

B = − 1
π

{ ∞∑

r=1

[J3(r) + J4(r)] + J5(r)

}
, (14)

where

J1(r) =
∫ ∞

−∞
F (k) sin kz exp[2irkd]dk;

J2(r) =
∫ ∞

−∞
F (k) exp[ikz]dk,

J3(r) =
∫ ∞

−∞
F (k) sin kz exp[i(2r − 1)kd]dk;

J4(r) =
∫ ∞

−∞
F (k) sin kz exp[i(2r + 1)kd]dk,

J5(r) =
1
2i

∫ ∞

−∞
F (k) {exp[ik(d + z)] − exp[ik(d − z)]} dk,

(15)

and
F (k) =

k[1 + Gk]

−(
ω
s

)2 + k2[1 + Gk]
(16)

Substituting equation (4) in equation (9), and after
some manipulations, one obtains the dispersion function

D(k) =
(ks

ω

)2[1 + Gk

] − 1, (17)

which besides the zeros k = ±k0 with

k0 =
ω

s

[
1−γ−(γα)2−iγ

ν

ω
+γ

√(
1 + γ α2 + i

ν

ω

)2 − α2

]
,

(18)
also has branch points k1 = ±ω∗/(ηv0). Hence, the so-
lution can be represented as a sum of an OAW (UOAW)
whose velocity of propagation is close to the sound veloc-
ity s, and an AAW (UAAW) determined by electrons with
velocity vz � ηv0. Here,

γ =
mL2

π3�2� a v2
0

∼ m

M
,

where m and M are the electron and ion masses, respec-
tively.

Applying the theorem of Cauchy, each integral in (15)
can be represented as

Jn = −JΓ
n + 2iπ

∑

j

Resj, (n = 1, 2, 3, 4, 5). (19)

The second term in (18) is connected with the OAW.
Its amplitude can be determined if the residues at the
roots of the dispersion equation (17) are calculated,

see equation (20) above
where the following notations are used,

f =
s

ω
k0; a = q d; α =

η v0

s
; c =

ν

ω
. (21)

The amplitude of the AAW is determined by the con-
tour integral along the “edges” of the cut in the complex
plane from the branch point k1 = ω∗/(ηv0) of the dis-
persion function D(k) to infinity. It can be written in the
following form

UAAW(z) =

U(0)
γ

i

∫ ∞

1

(1 + ic)f(x)
cos[a

2
x
α (1 + ic)(1 − 2 z

d ]
cos[a

2
x
α (1 + ic)]

, (22)

where

f(x) =
√

x2 − 1
x [1 − (1 + i c)2x2/α2]2

; x = kηv0/ω∗. (23)

Equations (20) and (22) have been obtained for the
symmetrical case, U(0) = U(d). Analogous relations
can be derived for asymmetric case as well, i.e. for
U(0) = −U(−d).
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4 Discussion

The anomalous acoustic field in the case of a quasi-2D
electron energy spectrum is controlled by electrons near
the extremum vz of the Fermi surface, reached at pz =
π�/2a. The projection of the electron velocities onto the
normal to the layers is then (vz)ext = η v0 and it is the
velocity of propagation of the anomalous quasi-wave. For
these electrons, it follows from (23) that the value of x
is close to unity, x ∼ 1. Therefore the upper limit of the
integral in equation (22) can be cut at some value that
depends on the frequency of the external acoustic field,
x1(ω). For z = d/2 and frequencies 1 π ≤ ωd/(ηv0) ≤ 20 π
this limit is in the range 1.2 ≥ x1 ≥ 1.03. It is obvious
that with increasing frequency, the value of x1 decreases
and so does the amplitude of the AAW. Presumably, the
reason for this is that an increasing frequency produces
larger field inhomogeneities and so the “synchronization”
can be achieved with a smaller number of electrons.

Equations (20) and (22) show that under some condi-
tions, standing OAWs as well as AAWs can be formed in
the film. In the collisionless limit, ν/ω → 0, the resonance
frequencies at which standing AAWs occur are determined
by the conditions

a

α
=

ωnd

ηv0
= (2n + 1)π, (n = 0, 1, 2, 3, · · · ). (24)

The amplitudes of both waves depend on the param-
eters a = q d, α = ηv0/s, and c = ν/ω. In the above ex-
pressions two new parameters can be introduced, θ = a/α
and b = d/(η�), so that the only parameter that depends
on the frequency is now θ. In the following, the ampli-
tudes of the OAW and AAW are analysed in function of
the parameters α, θ and b.

For α � 1 (η v0 � s), the OAW undergoes collisionless
damping linear in the frequency. The attenuation decre-
ment is then

�k0 = γq
√

α2 − 1, (25)

which is smaller than in an isotropic conductor (at α � 1
it contains the factor η v0). As indicated above, this occurs
because the deformation interaction is small in a quasi-2D
conductor. The attenuation decrement decreases radically
when η v0 approaches s. If η v0 and s coincide, i.e for α = 1,

k0 = q
(
1 − γ + i γ

√
ν/ω

)
, (|1 − α| � ν2/ω2 � 1),

(26)
and the attenuation decrement Γ = �k0 approaches zero.
The amplitude of the OAW has its maximum in this case
because the condition for formation of standing OAWs
in the film are fulfilled. At α = 1 these conditions are
destroyed and the amplitude of the OAW decreases rapidly
(Fig. 1a).

Figure 1b shows the dependence of the amplitude of
the AAW on the parameter α. It is obvious that the am-
plitude of the AAW has its maximum value also at α = 1,
as in this case the electron velocity vmax

z is along the wave
vector which means that the interaction of these electrons

(a)

(b)

Fig. 1. The dependence of the amplitude of: a) OAW; b) AAW
versus paramater α = ηv0/s (z = d/2, b = 0.05, g = 10−4,
ϑ = π).

with the electric field accompanying the wave is most ef-
fective.

The frequency dependence of the amplitudes of the
OAW and AAW at α = 1 is shown in Figures 2a and 2b,
respectively. In this case the frequencies determined by
equation (24) are resonant for both waves but the ampli-
tude of the OAW is much larger than that of AAW. With
increasing α, the conditions for forming standing OAWs
are violated but not the conditions for forming standing
AAWs.

The amplitude of the OAW decreases with increasing
frequency at α � 1 since the attenuation decrement is
proportional to ω (Eq. (25)). At α = 50 and frequencies
θ = ωnd/(ηv0) ≥ 35 π (i.e. a = q d ≥ 1750 π), the OAW is
attenuated, and the AAW becomes dominant (Fig. 3a and
Fig. 3b). For larger values of α the OAW is attenuated at
even lower frequencies.

At α = 300, the attenuation of the OAW occurs for
frequencies θ ≥ π, i.e. a ≥ 300 π (Fig. 4a and Fig. 4b).

When η v0 < s, the OAW is attenuated by elec-
tron scattering. Then, the coefficient of attenuation does
not depend on ω,

�k0 = γ
ν

s

( 1√
1 − α2

− 1
)
, (1 − α � ν2/ω2). (27)
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(a)

(b)

Fig. 2. The frequency dependence of the amplitude of: a)
OAW; b) AAW at α = 1 (z = d/2, b = 0.05, g = 10−4).

Fig. 3. The frequency dependence of the amplitude of: a)
OAW; b) AAW at α = 50 (z = d/2, b = 0.05, g = 10−4).

A purely two-dimensional electron gas (η v0/s → 0) would
not interact with an acoustic wave propagating along the
non-conducting axis and k0 = q.

Comparing the nature of the attenuation of the ordi-
nary and anomalous waves, one can easily determine that
the asymptotic form of the acoustic field in a quasi-2D con-
ductive film depends essentially on the value of α. There
exists a “critical” value

Fig. 4. The frequency dependence of the amplitude of: a)
OAW; b) AAW at α = 300 (z = d/2, b = 0.05, g = 10−4).

(a)

(b)

Fig. 5. The dependence of the amplitude of: a) OAW; b) AAW
versus parameter b = d/(nl) (z = d/2, α = 2, g = 10−4), ϑ = π.

αc =
√

ν

ωγ
, (αc � 1) (28)

below which the asymptotic form is like equation (20),
but above which it is determined by the quasi-wave given
by equation (22). These waves have substantially different
velocities of propagation.

The corresponding dependence of both waves on the
parameter b = d/(η�) is shown in Figures 5a and 5b.
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The amplitude of the OAW does not particularly depend
on this parameter but the amplitude of the AAW shows
a strong dependence on b. With increasing b it decreases
rapidly and for b → 1 (i.e. d → η�) the condition for
formation of standing AAWs is violated.

Formulas derivated above as well as the graphics ob-
tained for different values of parameters show that the
OAW in a quasi-2D conductive film in the absence of an
external magnetic field is strongly attenuated, and the
AAW is dominant, only for certain values of the char-
acteristic parameters: for larger values of α and at high
frequencies of the incident wave.

The investigation of AAWs is of interest because it
opens the possibility of studying the electronic structure
of quasi-2D conductors. For example, from the resonance
conditions for anomalous standing waves, one can calcu-
late the quasi-two-dimensionality parameter η, or one can
obtain more information on the relaxation properties of
the charge carriers.
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